RESEARCH INTERESTS

As a lifelong learner, I’m constantly exploring new areas of research that I believe will make the world a better, safer place. Below you will find my key interests and recent publications. Check out my blog for updates on my ongoing projects. 

 
Wind Turbines

DISTRIBUTED ENERGY RESOURCE INTEGRATION

Grid Modernization Efforts

The world's energy generation profile is changing rapidly, and will continue to evolve over the next 50 years. Predictions vary widely, but distributed energy resources including solar PV, battery storage, wind, and others will play a big role. The current bulk energy system is not designed to handle distributed generation sources, especially at the distribution level. I believe I can have a meaningful impact on the safe integration of DER by evaluating the resiliency, reliability, and security of integration plans, models, and policies.

PUBLICATIONS

October 2021

A CYBER-RESILIENCE RISK MANAGEMENT ARCHITECTURE FOR DISTRIBUTED WIND

 Distributed wind is a strong candidate to help meet renewable energy and carbon-free energy goals. However, care must be taken as more systems are installed to ensure that the systems are reliable, resilient, and secure. The physical and communications requirements for distributed wind mean that there are unique cybersecurity considerations, but there is little to no existing guidance on best practices for cybersecurity risk management for distributed wind systems specifically. This research develops an architecture for managing cyber risks associated with distributed wind systems through resilience functions. 

August 2021

CYBERSECURITY GUIDE FOR DISTRIBUTED WIND

This report provides an introduction to cybersecurity for distributed wind by discussing the architectures, standards, and best practices that are most applicable. It explains why there needs to be special consideration for a resource as specific as distributed wind, and it provides guidance to relevant sets of stakeholders on their role in maintaining the security of the system.

July 2021

RESILIENCE FRAMEWORK FOR ELECTRIC ENERGY DELIVERY SYSTEMS

This report describes a framework for resilience planning, operation, and improvement. It focuses on the identifying system characteristics, resilience goals, and resilience hazards. It provides readers a process for evaluating system resilience and comparing the resilience of different configurations.

May 2021

CYBERSECURITY CONSIDERATIONS FOR GRID-CONNECTED BATTERIES WITH HARDWARE DEMONSTRATIONS

The distributed nature of DER devices combined with their network connectivity and complex controls interfaces present a larger potential attack surface for adversaries looking to create instability in power systems. In this work, we focus on grid-connected batteries. We explore the potential impacts of a cyberattack on a battery to power system stability, to the battery hardware, and on economics for various stakeholders. We then use real hardware to demonstrate end-to-end attack paths exist when security features are disabled or misconfigured.

Read here: MDPI Energies Journal

May 2021

DISTRIBUTED WIND RESILIENCE METRICS FOR ELECTRIC ENERGY DELIVERY SYSTEMS

While most people have a general concept of what it means to be "resilient," and examination of definitions from different sources reveals that there are key commonalities, but key differences as well. This INL report explores the definition of resilience for electric energy delivery systems, metrics appropriate for evaluating resilience, and the application to distributed wind.

May 2021

SECURING DISTRIBUTED ENERGY RESOURCE INTEGRATION

The penetration of distributed energy resources (DER) is growing at much higher rates than predicted 20 years ago. Far from being used only in residential settings, DER are now installed on distribution and transmission circuits. In this position, they do not have the same properties as traditional generators and are more flexible in many cases. The growing penetration and range of uses for DER motivate the need to reliably and safely integrate them into the grid. This Master's thesis explores cybersecurity for DER from conceptual and operational perspectives.

Learn More

April 2021

STABILITY IMPACT OF IEEE 1547 OPERATIONAL MODE CHANGES UNDER HIGH DER PENETRATION IN THE PRESENCE OF CYBER ADVERSARY

The IEEE 1547 standard addresses the integration of Distributed Energy Resources (DER) into Area Electric Power Systems (AEPS). The updated standard, released in 2018 with revisions ongoing, specifies the need for more flexible settings, requiring the DER to remain connected during certain disturbances and provide voltage support via active and reactive power modes. With these increased capabilities comes increased risks, and our analysis of the standard has produced potential settings combinations, which, while allowable under the standard, may actually create instability.

IEEE-SmartGridComm.png

October 2019

PAVED: PERTURBATION ANALYSIS FOR VERIFICATION OF ENERGY SYSTEMS

Sensor integrity is arguably the most critical feature to protect in cyber-physical systems. Since power systems are cyber-physical systems with ubiquitous sensors that monitor and protect the grid, data must be trustworthy. Process safety and control decisions ultimately depend on data. The focus of this paper is how to design and apply perturbation based detection for sensor verification, under full AC unobservable false data injection (AU-FDI) attacks, by combining an active probing strategy with cyber-side data based on the cyber-physical situational awareness model CyPSA.

explorations_cover.png

November 2018

BUILDING AN INVISIBLE WALL: REAL-TIME METHODS TO IMPROVE POWER GRID CYBERSECURITY

The 10th Edition of the Texas A&M undergraduate research journal, Explorations, includes this article describing how power grids are vulnerable to cyberattacks, but methods are being developed to detect attacks before the cause damage to power grids.

thesis.png

April 2018

SENSOR VERIFICATION FOR CYBER-PHYSICAL MODELS OF POWER SYSTEMS

This was an undergraduate thesis project for the URS program. This project explores the ways that data from sensors in power systems can be authenticated by enhancing the security of power systems from a cyber-physical point of view. This is a continuation of the work for the NSF project “CPS: Synergy: Collaborative Research: Distributed Just-Ahead-Of-Time Verification of Cyber-Physical Critical Infrastructure.” Adversaries who gain access to a cyber-physical system can cause significant physical damage and financial loss by injecting false data into a sensor node. Identifying adversarial action in a system can mitigate unsafe actions made based off of bad data. The technique presented in this work combines topology analysis with real-time probing to create a measure of trustworthiness of sensors in a system.

IEEE-GreenTech.png

April 2018

TOWARD A SENSOR TRUSTWORTHINESS MEASURE FOR GRID-CONNECTED IOT-ENABLED SMART CITIES

Traditional security measures for large-scale critical infrastructure systems have focused on keeping adversaries out of the system. As the internet of things (IoT) extends into millions of homes, with tens or hundreds of devices each, the threat landscape is complicated. IoT devices have unknown access capabilities with unknown reach into other systems. This paper presents ongoing work on how techniques in sensor verification and cyber-physical modeling and analysis on bulk power systems can be applied to identify malevolent IoT devices and secure smart and connected communities against the most impactful threats.